95 research outputs found

    Composite Millicharged Dark Matter

    Full text link
    We study a composite millicharged dark matter model. The dark matter is in the form of pion-like objects emerging from a higher scale QCD-like theory. We present two distinct possibilities with interesting phenomenological consequences based on the choice of the parameters. In the first one, the dark matter is produced non-thermally and it could potentially account for the 130 GeV Fermi photon line via decays of the "dark pions". We estimate the self-interaction cross section which might play an important role both in changing the dark matter halo profile at the center of the galaxy and in making the dark matter warmer. In the second version the dark matter is produced via the freeze-in mechanism. Finally we impose all possible astrophysical, cosmological and experimental constraints. We study in detail generic constraints on millicharged dark matter that can arise from anomalous isotope searches of different elements and we show why constraints based on direct searches from underground detectors are not generally valid.Comment: 10 pages, published versio

    The Dark Side of Neutron Stars

    Get PDF
    We review severe constraints on asymmetric bosonic dark matter based on observations of old neutron stars. Under certain conditions, dark matter particles in the form of asymmetric bosonic WIMPs can be effectively trapped onto nearby neutron stars, where they can rapidly thermalize and concentrate in the core of the star. If some conditions are met, the WIMP population can collapse gravitationally and form a black hole that can eventually destroy the star. Based on the existence of old nearby neutron stars, we can exclude certain classes of dark matter candidates.Comment: Presented at ICRC 2013, 5 pages, 1 figur

    Probing Light Dark Matter via Evaporation from the Sun

    Get PDF
    Dark matter particles can be captured by the sun with rates that depend on the dark matter mass and the DM-nucleon cross section. However, for masses below ∼3.3\sim 3.3 GeV, the captured dark matter particles evaporate, leading to an equilibrium where the rate of captured particles is equal to the rate of evaporating ones. Unlike dark matter particles from the halo, the evaporating dark matter particles have velocities that are not limited to values below the escape velocity of the galaxy. Despite the fact that high velocities are exponentially suppressed, I demonstrate here that current underground detectors have the possibility to probe/constrain low dark matter parameter space by (not)-observing the high energy tail of the evaporating dark matter particles from the sun. I also show that the functional form of the differential rate of counts with respect to the recoil energy in earth based detectors can identify precisely the mass and the cross section of the dark matter particle in this case.Comment: 5 pages, 1 figur

    DaMaSCUS: The Impact of Underground Scatterings on Direct Detection of Light Dark Matter

    Get PDF
    Conventional dark matter direct detection experiments set stringent constraints on dark matter by looking for elastic scattering events between dark matter particles and nuclei in underground detectors. However these constraints weaken significantly in the sub-GeV mass region, simply because light dark matter does not have enough energy to trigger detectors regardless of the dark matter-nucleon scattering cross section. Even if future experiments lower their energy thresholds, they will still be blind to parameter space where dark matter particles interact with nuclei strongly enough that they lose enough energy and become unable to cause a signal above the experimental threshold by the time they reach the underground detector. Therefore in case dark matter is in the sub-GeV region and strongly interacting, possible underground scatterings of dark matter with terrestrial nuclei must be taken into account because they affect significantly the recoil spectra and event rates, regardless of whether the experiment probes DM via DM-nucleus or DM-electron interaction. To quantify this effect we present the publicly available Dark Matter Simulation Code for Underground Scatterings (DaMaSCUS), a Monte Carlo simulator of DM trajectories through the Earth taking underground scatterings into account. Our simulation allows the precise calculation of the density and velocity distribution of dark matter at any detector of given depth and location on Earth. The simulation can also provide the accurate recoil spectrum in underground detectors as well as the phase and amplitude of the diurnal modulation caused by this shadowing effect of the Earth, ultimately relating the modulations expected in different detectors, which is important to decisively conclude if a diurnal modulation is due to dark matter or an irrelevant background.Comment: 33 pages including 20 figures and 4 appendices. The DaMaSCUS code is available at https://github.com/temken/ . v2: matches the published versio

    Growth of Black Holes in the interior of Rotating Neutron Stars

    Full text link
    Mini-black holes made of dark matter that can potentially form in the interior of neutron stars have been always thought to grow by accreting the matter of the core of the star via a spherical Bondi accretion. However, neutron stars have sometimes significant angulal velocities that can in principle stall the spherical accretion and potentially change the conclusions derived about the time it takes for black holes to destroy a star. We study the effect of the star rotation on the growth of such black holes and the evolution of the black hole spin. Assuming no mechanisms of angular momentum evacuation, we find that even moderate rotation rates can in fact destroy spherical accretion at the early stages of the black hole growth. However, we demonstrate that the viscosity of nuclear matter can alleviate the effect of rotation, making it possible for the black hole to maintain spherical accretion while impeding the black hole from becoming maximally rotating.Comment: 9 page

    On (Not)-Constraining Heavy Asymmetric Bosonic Dark Matter

    Full text link
    Recently, constraints on bosonic asymmetric dark matter have been imposed based on the existence of old neutron stars excluding the dark matter masses in the range from ∼2\sim 2 keV up to several GeV. The constraints are based on the star destruction scenario where the dark matter particles captured by the star collapse forming a black hole that eventually consumes the host star. In addition, there were claims in the literature that similar constraints can be obtained for dark matter masses heavier than a few TeV. Here we argue that it is not possible to extend to these constraints. We show that in the case of heavy dark matter, instead of forming a single large black hole that consumes the star, the collapsing dark matter particles form a series of small black holes that evaporate fast without leading to the destruction of the star. Thus, no constraints arise for bosonic asymmetric dark matter particles with masses of a few TeV or higher

    Blocking the Hawking Radiation

    Full text link
    Some severe constraints on asymmetric dark matter are based on the scenario that certain types of WIMPs can form mini-black holes inside neutron stars that can lead to their destruction. A crucial element for the realization of this scenario is that the black hole grows after its formation (and eventually destroys the star) instead of evaporating. The fate of the black hole is dictated by the two opposite mechanics i.e. accretion of nuclear matter from the center of the star and Hawking radiation that tends to decrease the mass of the black hole. We study how the assumptions for the accretion rate can in fact affect the critical mass beyond which a black hole always grows. We also study to what extent degenerate nuclear matter can impede Hawking radiation due to the fact that emitted particles can be Pauli blocked at the core of the star.Comment: 9 pages, 2 figure

    Daily modulation and gravitational focusing in direct dark matter search experiments

    Get PDF
    We study the effect of gravitational focusing of the earth on dark matter. We find that the effect can produce a detectable diurnal modulation in the dark matter signal for part of the parameter space which for high dark matter masses is larger than the diurnal modulation induced by the fluctuations in the flux of dark matter particles due to the rotation of the earth around its own axis. The two sources of diurnal modulation have different phases and can be distinguished from each other. We demonstrate that the diurnal modulation can potentially check the self-consistency of experiments that observe annual modulated signals that can be attributed to dark matter. Failing to discover a daily varying signal can result conclusively to the falsification of the hypothesis that the annual modulation is due to dark matter. We also suggest that null result experiments should check for a daily modulation of their rejected background signal with specific phases. A potential discovery could mean that dark matter collisions have been vetoed out.Comment: 8 pages, 4 figures (published version
    • …
    corecore